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Abstract 

This study introduces a six-compartmental mathematical model (S, 𝑉1, 𝑉2, E, 

I, R) to examine the impact of administering a double dose vaccine on the dynamic 

spread of diarrhea within a community. The mathematical analysis shows the existence 

of equilibrium points for both disease-free and endemic states in the model. The basic 

reproduction number 𝑅𝑜 was determined using the Next Generation Matrix. Analysis 

has shown that the basic reproduction number 𝑅𝑜 < 1 which indicates the disease-free 

equilibrium point is locally asymptotically stable. Also, using a suitable Lyapunov 

functional for the model system expressed in state variables and parameters defining 

the dynamic characteristics of spread and control strategies of the rotavirus diarrhea 

to obtain the global stability of disease-free equilibrium point over time. A numerical 

simulation was carried out by Wolfram Mathematica to show the effect of a second-

dose vaccine. The inclusion of a double-dose vaccine has been found to have a 

significant effect on completely eliminating the outbreak of diarrhea. This is evidenced 

by the local and global stability results, which indicate that effective measures have 

been taken to prevent the reintroduction or transmission of the disease, and if there 

may be a risk of outbreaks or reemergence of the disease, very little continuous 

monitoring and intervention strategies are required to maintain control as this should 

be taken seriously by medical practitioners or policy health makers. 

Keywords: Stability, Basic Reproduction Number, Vaccination; Diarrhea Model, 

Lyapunov function,  

 
I.   Introduction 

Diarrhea is the second most common cause of death in children under five 

years old, claiming the lives of numerous children worldwide. It causes more deaths 

among young children than any other childhood infectious diseases, with over 1.5 
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million deaths attributed to diarrhea annually. This makes it a more significant health 

threat in terms of mortality than infectious diseases. It is a health issue characterized 

by frequent loose and watery bowel movements, often accompanied by abdominal 

bloating and pressure. The primary cause of diarrhea is typically an infection within 

the digestive system, which can be attributed to various microorganisms like viruses, 

bacteria, or parasites. Rotavirus is a highly contagious virus that frequently leads to 

diarrhea in infants and young children. It is disseminated by contact with an infected 

person’s stool with symptoms like severe watery diarrhea, vomiting, fever, and 

abdominal pain. Infected children may require hospitalization due to dehydration. The 

CDC recommends rotavirus vaccination for infants to prevent the disease. Study shows 

that most of these vaccines do not give complete protection because their effectiveness 

wanes over time. Therefore, this study aims to investigate the potential benefits of 

administering second doses of rotavirus vaccines to individuals to provide additional 

protection against the disease.  

The historical usage of differential equations in modeling biological, ecological, and 

medical systems can be traced back to notable figures such as Verhulst, Malthus, Lotka, 

and Volterra, see [IX]. Over the years ordinary differential equations have been useful 

for modeling natural phenomena. Specifically, systems of nonlinear differential 

equations have shown great effectiveness in capturing population dynamics, the spread 

of infectious diseases, inter-species interactions, and various other biological processes, 

see ([VI], [VIII], [XI], [XII] and [XIII]). [VII] conducted research on the assessment 

of controlling bovine viral diarrhea virus using a mathematical model that captures the 

dynamics of infection. According to the model’s predictions, approximately 1.2 percent 

of animals would have persistent infections, aligning with field estimates. Moreover, 

the model displayed limited sensitivity to modifications in its structure or parameter 

values. This study provided valuable insights into Bovine Viral Diarrhea (BVD) control 

measures, highlighting the significant role played by persistently infected (PI) animals 

in perpetuating BVD as an ongoing issue within a herd. [III] studied an epidemiological 

model of diarrhea diseases and its potential for prevention and control. The model 

successfully replicated the observed patterns of infantile diarrhea diseases, which are 

primarily linked to enterotoxigenic Escherichia coli or rotavirus. Through the proposed 

mathematical model, they were able to predict a plausible serological profile of an 

enteric infection while [V] studied the impact of saturation treatment on the dynamic 

spread of diarrhea in the community using a mathematical (SITR) model. [I] 

investigated the impact of a vaccine on cases of diarrhea. They calculated the basic 

reproduction number (𝑅𝑜), and found that when 𝑅𝑜 > 1, the disease became endemic, 

indicating that it persisted within the population at a steady rate as each infected person 

transmitted the disease to one susceptible individual. Recently, [XIV] examined how 

vaccines and treatment impact the spread of diarrhea in a community. They 

demonstrated that the model has a disease-free equilibrium point that is stable both 

locally and globally over time. The findings illustrated that vaccines and treatment 

significantly decrease the occurrence of diarrhea infections. However, they noted that 

while vaccination alone is not enough to reduce the basic reproduction number, it does 

manage the disease.  
 

Despite multiple efforts, eliminating diarrhea has proven to be a difficult undertaking 
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due to ongoing infections even in the presence of a vaccine, see [II], [IV] and other 

literature cited therein. To investigate the impact of a double-dose vaccine on the 

dynamic spread of diarrhea in a community, we developed a deterministic epidemic 

model (S, 𝑉1, 𝑉2, E, I, R). The findings indicate that if the basic reproduction number 

is below one, regardless of the initial number of infected individuals in the population, 

diarrhea can be controlled through the use of a double-dose vaccine rapidly and over 

time. 

II.    Model Equation 

In this context, we examine six categories of people, namely those who are 

susceptible (S), have received one dose of vaccine (𝑉1), have received two doses of 

vaccine (𝑉2), are exposed to the disease (E), are infected (I), and have recovered from 

the disease (R). This model is suitable for diseases that involve a significant period 

after infection during which an exposed person is not yet capable of spreading the 

infection. The S, 𝑉1 , 𝑉2 , E, I, R model comprises a collection of six differential 

equations. 

  

𝑑𝑆

𝑑𝑡
= (1 − 𝜌)𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝜃𝑅

𝑑𝑉1

𝑑𝑡
= 𝜌𝜋 − 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝛼)𝑉1

𝑑𝑉2

𝑑𝑡
= 𝛼𝑉1 − (𝜇 + 𝜙)𝑉2

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝜎)𝐸

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼

𝑑𝑅

𝑑𝑡
= 𝜙𝑉2 + (𝛾 + 𝜏)𝐼 − (𝜇 + 𝜃)𝑅

     (1) 

 

Fig 1. Schematic Diagram for the Diarrhea Model 

Table 1: Description of parameters of the model 
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Parameter Description 

𝜋 Recruitment rate 

𝛽 Contact rate 

𝜌 Vaccination rate 

𝜇 Natural death rate 

𝜃 The rate at which recovered individuals revert to susceptible class 

𝜖 Reduction in infectivity due to first dose vaccine 

𝛼 Rate of second dose vaccination 

𝜙 Rate of acquiring immunity from second dose vaccine 

𝜏 Treatment rate of exposed persons 

𝜎 The infection rate of the exposed person 

𝛿 Induced disease death rate 

𝛾 Natural recovery rate 

III.   Disease-Free Equilibrium 

At disease-free equilibrium, there’s no infection i.e. 𝐼 = 𝐸 = 0 . At the 

equilibrium point, the model formulation is set to zero. 

   
𝑑𝑆

𝑑𝑡
=

𝑑𝑉1

𝑑𝑡
=

𝑑𝑉2

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0. 

Solving for 𝑆, 𝑉1, 𝑉2, 𝐸 and 𝑅, give the disease-free equilibrium 𝜉𝑜 =
(𝑆𝑜, 𝑉1

𝑜, 𝑉2
𝑜, 𝐸𝑜, 𝑅𝑜) as 

𝜉0 =
(1 − 𝜌)𝜋

𝜇
+

𝜙𝛼𝜌𝜋

𝜇(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
,

𝜌𝜋

𝜇 + 𝛼
,

𝛼𝜌𝜋

(𝜇 + 𝜙)(𝜇 + 𝛼)
,

0,0,
𝜙𝛼𝜌𝜋

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
.

 

IV.   Basic Reproduction Number 𝑹𝑶/𝑹𝒆    

Here, the effective reproduction number is influenced by the inclusion of two 

doses of vaccines as a control measure in the model. 

To compute the effective reproduction number, 𝑅𝑒, we employed the method of next 

generation matrix in which 𝑅𝑒 = 𝜌(𝐹𝑉−1) where 

𝐹 = 𝐷ℱ|𝜖 = 𝐷 (
𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼

0
)

𝜖
= (0

𝛽

𝜇
[(1 − 𝜌)𝜋 +

𝜙𝛼𝜌𝜋

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
+

𝜖𝛽𝜌𝜋

𝜇 + 𝛼
]

0 0

) 

𝑉 = 𝐷𝒱|𝜖 = 𝐷 (
(𝜇 + 𝜎)𝐸

−𝜎𝐸 + (𝜇 + 𝛿 + 𝛾 + 𝜏)
)

𝜖

= (
𝜇 + 𝜎 0
−𝜎 𝜇 + 𝛿 + 𝛾 + 𝜏

) 
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𝑉−1 =
1

(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)
(
𝜇 + 𝛿 + 𝛾 + 𝜏 0

𝜎 𝜇 + 𝜎
)

=

(

 

1

𝜇 + 𝛿
0

𝜎

(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)

1

𝜇 + 𝛿 + 𝛾 + 𝜏)

 
 

𝐹𝑉−1 = (
0

𝛽

𝜇
[(1 − 𝜌)𝜋 +

𝜙𝛼𝜌𝜋

(𝜇+𝜃)(𝜇+𝜙)(𝜇+𝛼)
] +

𝜖𝛽𝜌𝜋

𝜇+𝛼

0 0
) (

1

𝜇+𝛿
0

𝜎

(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)

1

𝜇+𝛿+𝛾+𝜏

)

= (
𝛽𝜎

(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)
𝛷

𝛽

𝜇+𝛿+𝛾+𝜏
𝛷

0 0
)

  

where 

𝛷 = {
1

𝜇
[(1 − 𝜌)𝜋 +

𝜙𝛼𝜌𝜋

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
] +

𝜖𝜌𝜋

𝜇 + 𝛼
} 

We then solve |𝐹𝑉−1 − 𝜆𝐼| = 0 to find the eigenvalues 𝜆 i.e 

∣
∣
∣
∣
∣ 𝛽𝜎

(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)
𝛷 − 𝜆

𝛽

𝜇 + 𝛿 + 𝛾 + 𝜏
𝛷

0 −𝜆 ∣
∣
∣
∣
∣
= 0 

⟹ 

𝜆 = 0 

or 

𝜆 =
𝛽𝜎𝜋

𝜇(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼)
[(1 − 𝜌)(𝜇 + 𝛼) +

𝜃𝜙𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)
+ 𝜇𝜖𝜌] = 𝑅𝑒 

Hence, 

𝑅𝑒 =
𝛽𝜎𝜋

𝜇(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼)
[(1 − 𝜌)(𝜇 + 𝛼) +

𝜃𝜙𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)
+ 𝜇𝜖𝜌] 

In the absence of vaccination, the basic reproduction number (i.e if 𝜌 = 𝛼 = 0) is 

𝑅𝑜 =
𝛽𝜎𝜋

𝜇(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)
. 

V.   Endemic Equilibrium Points    

At the state of endemic equilibrium, there is an infection present within the 

host population, meaning that 𝐸, 𝐼 ≠ 0. To achieve an endemic equilibrium, we need 

to set each equation in the formulated model to zero in Eq. (1) as 

  (1 − 𝜌)𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝜃𝑅 = 0      (2) 
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  𝜌𝜋 − 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝛼)𝑉1 = 0      (3) 

 𝛼𝑉1 − (𝜇 + 𝜙)𝑉2 = 0        (4) 

 𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝜎)𝐸 = 0      (5) 

 𝜎𝐸 − (𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼 = 0      (6) 

 𝜙𝑉2 + (𝛾 + 𝜏)𝐼 − (𝜇 + 𝜃)𝑅 = 0     (7) 

From Eqs. (4) and (7); 

  𝑉2 =
𝛼

𝜇+𝜙
𝑉1 

  𝐸 =
𝜇+𝛿+𝛾+𝜏

𝜎
𝐼 

substitute for 𝑉2 and 𝐼 in (7), we have 

  
𝛼𝜙

𝜇+𝜙
𝑉1 +

𝜎(𝛾+𝜏)

(𝜇+𝛿+𝛾+𝜏)
𝐸 − (𝜇 + 𝜃)𝑅 = 0 

  ⟹ 

  𝑅 =
1

𝜇+𝜃
[
𝛼𝜙𝑉1

𝜇+𝜙
+ (𝛿 + 𝜏)𝐼]. 

From (3) 

  𝜌𝜋 − (𝜖𝛽𝐼 + 𝜇 + 𝛼)𝑉1 = 0 ⟹ 

  𝑉1 =
𝜌𝜋

𝜖𝛽𝐼+𝜇+𝛼
 

From (2) 

  (1 − 𝜌)𝜋 − (𝛽𝐼 + 𝜇)𝑆 + 𝜃𝑅 = 0 ⟹ 

 𝑆 =
(1−𝜌)𝜋+𝜃𝑅

𝛽𝐼+𝜇
        (8) 

Also from (5) 

 𝑆 =
(𝜇+𝜎)𝐸−𝜖𝛽𝑉1𝐼

𝛽𝐼
       (9) 

From (8) and (9), we have 

  
(1−𝜌)𝜋+𝜃𝑅

𝛽𝐼+𝜇
=

(𝜇+𝜎)𝐸−𝜖𝛽𝑉1𝐼

𝛽𝐼
 

substituting for 𝑉1, 𝐸 and 𝑅 yields 
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(1 − 𝜌)𝜋𝛽𝐼 +
𝜃𝛽𝐼

𝜇 + 𝜙
[
𝛼𝜙𝑉1

𝜇 + 𝜙
+ (𝛾 + 𝜏)𝐼] =

(𝜇 + 𝜎)𝛽𝐼(𝜇 + 𝛿 + 𝛾 + 𝜏)

𝜎
𝐼

+
𝜇 + (𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)

𝜎
𝐼 −

𝜖𝜌𝜋

𝜖𝛽𝐼 + 𝜇 + 𝛼
(𝛽𝐼)2 −

𝜇𝜖𝛽𝜌𝜋𝐼

𝜖𝛽𝐼 + 𝜇 + 𝛼
.

 

(1 − 𝜌)𝜋𝛽𝐼 +
𝜃𝛽𝐼⋅𝛼𝜌𝜋

(𝜇+𝜃)(𝜇+𝜙)(𝜖𝛽𝐼+𝜇+𝛼)
+

𝜃𝛽(𝛾+𝜏)

𝜇+𝜃
𝐼 =

(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)𝛽𝐼

𝜎
𝐼

+
𝜇+(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)

𝜎
𝐼 −

𝜖𝜌𝜋

𝜖𝛽𝐼+𝜇+𝛼
(𝛽𝐼)2 −

𝜇𝜖𝛽𝜌𝜋𝐼

𝜖𝛽𝐼+𝜇+𝛼
,

  

multiplying through by 𝜖𝛽𝐼 + 𝜇 + 𝛼 to obtain 

(1 − 𝜌)𝜋𝜖𝛽2𝐼2 + (1 − 𝜌)(𝜇 + 𝛼)𝜋𝛽𝐼 +
𝜃𝛽𝛼𝜙𝜌𝜋𝐼

(𝜇+𝜃)(𝜇+𝜙)
𝐼 +

𝜃𝛽(𝛾+𝜏)𝐸𝛽𝐼2

𝜇+𝜃

+
𝜃𝛽(𝛾+𝜏)(𝜇+𝛼)𝐼

𝜇+𝜃
=

𝛽(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)𝜖𝛽𝐼2

𝜎

+
𝛽(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)(𝜇+𝛼)𝐼2

𝜎
+

𝜇(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)𝜖𝛽𝐼2

𝜎

+
𝜇(𝜇+𝜎)(𝜇+𝛿𝛾+𝜏)(𝜇+𝛼)𝐼

𝜎
− 𝜖𝜌𝜋𝛽2𝐼2 − 𝜇𝜖𝜌𝜋𝛽𝐼.

  

(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)𝜖𝛽2𝐼3

𝜎

+[
(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)𝛽

𝜎
(𝜇 + 𝛼 + 𝜖𝜇) − (1 − 𝜌)𝜋𝜖𝛽2 − (𝛾 + 𝜏)𝜖𝜃𝛽2 − 𝜖𝜌𝜋𝛽2] 𝐼2

+[
(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)(𝜇+𝛼)𝜇

𝜎

−(1 − 𝜌)(𝜇 + 𝛼)𝜋𝛽 −
𝜃𝛽

𝜇+𝜃
(

𝛼𝜙𝜌𝜋

𝜇+𝜙
+ (𝛾 + 𝜏)(𝜇 + 𝛼)) − 𝜇𝜖𝜌𝜋𝛽] 𝐼 = 0

  

⟹ 𝐼 = 0 or 

𝜖𝛽2(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼2

+[𝛽(𝜇 + 𝛿)(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼 + 𝜖𝜇) − 𝜎𝜖𝛽2(𝜖𝜌𝜋 + 𝜃(𝛾 + 𝜏))]𝐼

+𝜇(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼)

[1 −
𝛽𝜎𝜋

𝜇(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)
[(1 − 𝜌)(𝜇 + 𝛼) + 𝜇𝜖𝜌 +

𝜃𝜙𝛼𝜌

(𝜇+𝜃)(𝜇+𝜙)
]

−
𝜃𝛽𝜎(𝛾+𝜏)(𝜇+𝛼)

𝜇(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)(𝜇+𝛼)(𝜇+𝜃)
] = 0.

  

 

 

It follows that 
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𝜖𝛽2(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼2

+𝛽(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼 + 𝜖𝜇) [1 −
𝜖𝛽2𝜎(𝜌𝜋+𝜃(𝛾+𝜏))

𝛽(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)(𝜇+𝛼+𝜖𝜇)
] 𝐼

−𝜇(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼) [
𝜃𝛽𝜎(𝛾+𝜏)(𝜇+𝛼)

𝜇(𝜇+𝛿)(𝜇+𝛿+𝛾+𝜏)(𝜇+𝛼)(𝜇+𝜃)
+ 𝑅𝑒 − 1] = 0,

 (10)  

 where 𝑅𝑒 is the effective reproduction number obtained in Section 3. 

From (10), if 

𝜖𝛽2𝜎(𝜌𝜋 + 𝜃(𝛾 + 𝜏))

𝛽(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼 + 𝜖𝜇)
< 1 

and if 

𝜃𝛽𝜎(𝛾 + 𝜏)(𝜇 + 𝛼)

𝜇(𝜇 + 𝛿)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼)(𝜇 + 𝜃)
+ 𝑅𝑒 > 1 

then (10) has only one sign change and so, only one positive root. Hence the model 

has a unique equilibrium point, defined by 

ℰ1 = (𝑆∗, 𝑉1
∗, 𝑉2

∗, 𝐸∗, 𝐼∗, 𝑅∗), where 

𝑆∗ =
1

𝛽𝐼 + 𝜇
{(1 − 𝜌)𝜋 +

𝜃

𝜇 + 𝜃
[

𝛼𝜙𝜌𝜋

(𝜇 + 𝜙)(𝜖𝛽𝐼 + 𝜇 + 𝛼)
+ (𝛾 + 𝜏)𝐼]}

𝑉1
∗ =

𝜌𝜋

𝜖𝛽𝐼 + 𝜇 + 𝛼

𝑉2
∗ =

𝛼𝜌𝜋

(𝜇 + 𝜙)(𝜖𝛽𝐼 + 𝜇 + 𝛼)

𝐸∗ =
𝜇 + 𝛿𝛾 + 𝜏

𝜎
𝐼

𝑅∗ =
1

𝜇 + 𝜃
[

𝛼𝜙𝜌𝜋

(𝜇 + 𝜙)(𝜖𝛽𝐼 + 𝜇 + 𝛼)
+ (𝛾 + 𝜏)𝐼]

 

and 𝐼∗ is the positive root of the quadratic equation defined in (10). 

VI.   Local Stability of the Disease-Free Equilibrium (DFE) 

Theorem 1.  The determined disease-free equilibrium 

𝜉0 =
(1 − 𝜌)𝜋

𝜇
+

𝜙𝛼𝜌𝜋

𝜇(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
,

𝜌𝜋

𝜇 + 𝛼
,

𝛼𝜌𝜋

(𝜇 + 𝜙)(𝜇 + 𝛼)
,

0,0,
𝜙𝛼𝜌𝜋

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
.

 

 applies for non-negative values of its parameters with 𝑅𝑜 ≤ 1 and 𝑅𝑜 > 1 being 

locally asymptotically stable and unstable respectively. 

Proof: From equation Eq. (1), it follows that 
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(1 − 𝜌)𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝜃𝑅 = 0 

𝜌𝜋 − 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝛼)𝑉1 = 0 

𝛼𝑉1 − (𝜇 + 𝜙)𝑉2 = 0 

𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝜎)𝐸 = 0 

𝜎𝐸 − (𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼 = 0 

𝜙𝑉2 + (𝛾 + 𝜏)𝐼 − (𝜇 + 𝜃)𝑅 = 0 

We obtain the Jacobian of the above system of equations concerning 𝑆, 𝑉1, 𝑉2, 𝐸, 𝐼, 𝑅 as 

follows, 

𝐽𝐷𝐹𝐸 = 

(

 
 
 
 

−𝛽𝐼𝑜 − 𝜇 0 0 0 −𝛽𝑆𝑜 𝜃

0 −𝜖𝛽𝐼 − (𝜇 + 𝛼) 0 0 0 − 𝜖𝛽𝑉1 0

0 𝛼 −(𝜇 + 𝜙) 0 0 0

𝛽𝐼𝑜 𝜖𝛽𝐼𝑜 0 −(𝜇 + 𝜎) 𝛽𝑆𝑜 + 𝜖𝛽𝑉1 0

0 0 0 𝜎 −(𝜇 + 𝛿 + 𝛾 + 𝜏) 0
0 0 𝜙 0 (𝛾 + 𝜏0) −(𝜇 + 𝜃))

 
 
 
 

  

Solving |𝐽𝐷𝐹𝐸 − 𝐼𝜆| at the Disease Free Equilibrium (DFE) point gives, 

(

 
 
 
 
 
 

−(𝜇 + 𝜆) 0 0 0 −
𝛽

𝜇
𝒲 0

0 −(𝜇 + 𝛼 + 𝜆) 0 0 −
𝜖𝛽𝜌𝜋

𝜇+𝛼
0

0 𝛼 −(𝜇 + 𝜙 + 𝜆) 0 0 0

0 0 0 −(𝜇 + 𝜃 + 𝜆) −
𝛽

𝜇
𝒬1 0

0 0 0 𝜎 −𝒯 0
0 0 𝜙 0 (𝛾 + 𝜏) −(𝜇 + 𝜃 + 𝜆))

 
 
 
 
 
 

  

where 

𝒯 = (𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜆)

𝒲 = [(1 − 𝜌)𝜋 +
𝜃𝜙𝛼𝜖𝜋

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
]

𝒬1 = {(1 − 𝜌)𝜋 +
𝜃𝜙𝛼𝜖𝜋

(𝜇 + 𝜃)(𝜇 + 𝜃)(𝜇 + 𝛼)
+

𝜖𝜌𝜋

𝜇 + 𝛼
} .

 

 

 

And evaluating the determinant we get, 
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(𝜇 + 𝜆)(𝜇 + 𝛼 + 𝜆) {−(𝜇 + 𝜙 + 𝜆)(𝜇 + 𝜎 + 𝜆)(𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜆) −
𝜎𝛽𝜋

𝜇

× {(1 − 𝜌) +
𝜃𝜙𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
} +

𝜖𝜌𝜋

𝜇 + 𝛼
} − (𝜇 + 𝜃 + 𝜆) = 0,

 

𝜆1 = −𝜇    𝜆3 = −(𝜇 + 𝜙)

𝜆2 = −(𝜇 + 𝛼)    𝜆4 = −(𝜇 + 𝜃)
 

and 

(𝜇 + 𝜎 + 𝜆)(𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜆) −
𝜎𝛽𝜋

𝜇
{(1 − 𝜌) +

𝜃𝜙𝛼𝜌

(𝜇𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
+

𝜇𝜖𝜌

𝜇 + 𝛼
}

= 0. 

From the immediate above equation, 

𝜆2 + 𝜆(2𝜇 + 𝜎 + 𝛿 + 𝛾 + 𝜏) + 𝜇(𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜎) + 𝜎(𝛿 + 𝛾 + 𝜏)

−
𝜎𝛽𝜋

𝜇
{(1 − 𝜌) +

𝜃𝜙𝛼𝜌

(𝜇𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
+

𝜇𝜖𝜌

𝜇 + 𝛼
} = 0.

 

We solve for the roots as 

𝜆5,6 =
−2(𝜇 + 𝜎 + 𝛿 + 𝛾 + 𝜏) ± √(2𝜇 + 𝜎 + 𝛿 + 𝛾 + 𝜏)2 − 4𝒬2

2
 

𝜆5 = −2(𝜇 + 𝜎 + 𝛿 + 𝛾 + 𝜏) − √(2𝜇 + 𝜎 + 𝛿 + 𝛾 + 𝜏)2 − 4𝒬2 

where 

𝒬2 = 𝜇(𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜎) + 𝜎(𝛿 + 𝛾 + 𝜏)

−
𝜎𝛽𝜋

𝜇
{(1 − 𝜌) +

𝜃𝜙𝛼𝜌

(𝜇𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
+

𝜇𝜖𝜌

𝜇 + 𝛼
}
 

and 

𝜆6 = −2(2𝜇 + 𝜎 + 𝛿 + 𝛾 + 𝜏) +

√(2𝜇 + 𝜎 + 𝛿 + 𝛾 + 𝜏)2 − 4 {𝜇(𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜎) + 𝜎(𝛿 + 𝛾 + 𝜏) −
𝜎𝛽𝜋

𝜇
} 𝒬3

  

where 

𝒬3 = {(1 − 𝜌) +
𝜃𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
+

𝜇𝜖𝜌

𝜇 + 𝛼
} . 

 

Squaring both sides 
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−4 {𝜇(𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜎) + 𝜎(𝛿 + 𝛾 + 𝜏) −
𝜎𝛽𝜋

𝜇

× ((1 − 𝜌) +
𝜃𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
+

𝜇𝜖𝜌

𝜇 + 𝛼
)} = 0.

 

𝜎𝛽𝜋

𝜇(𝜇 + 𝛼)
((1 − 𝜌)(𝜇 + 𝛼) +

𝜃𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)
+ 𝜇𝜖𝜌)

< 𝜇(𝜇 + 𝛿 + 𝛾 + 𝜏 + 𝜎) + 𝜎(𝛿 + 𝛾 + 𝜏) 

𝜎𝛽𝜋

𝜇(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)(𝜇+𝛼)
((1 − 𝜌)(𝜇 + 𝛼) +

𝜃𝛼𝜌

(𝜇+𝜃)(𝜇+𝜙)
+ 𝜇𝜖𝜌) < 1.  

That is, 

  𝑅𝑜 < 1. 

VII.   Global Stability of the Disease-Free Equilibrium (DFE) 

Theorem 2.  The DFE 𝜉𝑜 is globally asymptotically stable when 𝑅𝑜 ≤ 1. 

Proof: We consider a suitable Lyapunov functional 𝑉 = 𝑉(𝑆, 𝑉1, 𝑉2, 𝐸, 𝐼) defined by 

𝑉(𝑆, 𝑉1, 𝑉2, 𝐸, 𝐼) = (𝑆 − 𝑆𝑜 − 𝑆𝑜ln
𝑆

𝑆𝑜
) + (𝑉1 − 𝑉1

𝑜 − 𝑉1
𝑜ln

𝑉1

𝑉1
𝑜)

+(𝑉2 − 𝑉2
𝑜 − 𝑉2

𝑜ln
𝑉2

𝑉2
𝑜) + 𝑎𝐸 + 𝑏𝐼,

 (11) 

where 

𝑎 =
𝜎

(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)
 ; 𝑏 =

1

𝜇 + 𝛿 + 𝛾 + 𝜏
 

and 

[𝑆𝑜 =
1

𝜇
(1 − 𝜌)𝜋 +

𝜙𝛼𝜌𝜋

(𝜇 + 𝜃)(𝜇 + 𝜙)(𝜇 + 𝛼)
, 𝑉1

𝑜 =
𝜌𝜋

𝜇 + 𝛼
, 𝑉2

𝑜 =
𝛼𝜌𝜋

(𝜇 + 𝜙)(𝜇 + 𝛼)
], 

are the values S, 𝑉1 and 𝑉2 at DFE. 

Clearly, 𝑎 > 0 and 𝑏 > 0 in (11), for 𝑆 > 𝑆𝑜exp (
𝑆

𝑆𝑜), 𝑉1 > 𝑉1
𝑜exp (

𝑉1

𝑉1
𝑜) and 𝑉2 >

𝑉2
𝑜exp (

𝑉2

𝑉2
𝑜) in (11), since 𝑆𝑜, 𝑉1

𝑜, 𝑉2
𝑜 are equilibrium points of S, 𝑉1 and 𝑉2. Then, the 

first three terms of (11) are positive. 

Therefore, 𝑉(𝑆, 𝑉1, 𝑉2, 𝐸, 𝐼) is positive definite. 

The time derivative of the function 𝑉 in (11) along system (1) becomes 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-19, No.-10, October (2024)  pp 67-86 

A.L. Olutimo et al. 
 

78 

 

  

𝑑𝑉

𝑑𝑡
= (1 −

𝑆𝑜

𝑆
) [(1 − 𝜌)𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝜃𝑅]

+ (1 −
𝑉1

𝑜

𝑉1
) [𝜌𝜋 − 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝛼)𝑉1]

+ (1 −
𝑉2

𝑜

𝑉2
) [𝛼𝑉1 − (𝜇 + 𝜙)𝑉2]

+𝑎[𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝜎)𝐸]

+𝑏[𝜎𝐸 − (𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼],

 

at disease-free equilibrium, we have 

  

(1 − 𝜌)𝜋 = 𝛽𝑆𝐼𝑜 + 𝜇𝑆𝑜 − 𝜃𝑅𝑜;

𝜌𝜋 = 𝜖𝛽𝑉1𝐼
𝑜 + (𝜇 + 𝛼)𝑉1;

𝛼𝑉1 = (𝜇 + 𝜙)𝑉2
𝑜

𝐸 =
𝛽𝑆𝐼𝑜+𝜖𝛽𝑉1𝐼𝑜

(𝜇+𝜎)
;

𝜎𝐸 = (𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼𝑜.

 

It follows that 

  

𝑑𝑉

𝑑𝑡
= (1 −

𝑆𝑜

𝑆
) [𝛽𝑆𝐼𝑜 + 𝜇𝑆 − 𝜃𝑅𝑜 − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝜃𝑅]

+ (1 −
𝑉1

𝑜

𝑉1
) [𝜖𝛽𝑉1𝐼

𝑜 + (𝜇 + 𝛼)𝑉1 − 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝛼)𝑉1]

+ (1 −
𝑉2

𝑉2
) [(𝜇 + 𝜙)𝑉2

𝑜 − (𝜇 + 𝜙)𝑉2]

+𝑎 [𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼 − (𝜇 + 𝜎) ⋅
(𝛽𝑆𝐼𝑜+𝜖𝛽𝑉1𝐼𝑜)

(𝜇+𝜎)
]

+𝑏[(𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼𝑜 − (𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼].

 

Thus, 

𝑑𝑉

𝑑𝑡
= (1 −

𝑆𝑜

𝑆
) [𝛽𝑆𝐼𝑜 − 𝛽𝑆𝐼 + 𝜇(𝑆𝑜 − 𝑆) − 𝜃(𝑅𝑜 − 𝑅)]

+(1 −
𝑉1

𝑜

𝑉1
) [𝜖𝛽𝑉1𝐼

𝑜 − 𝜖𝛽𝑉1𝐼 + (𝜇 + 𝛼)(𝑉1
𝑜 − 𝑉1)]

+(1 −
𝑉2

𝑜

𝑉2
) [(𝜇 + 𝜙)(𝑉2

𝑜 − 𝑉2)] + 𝑎[𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼 − 𝛽𝑆𝐼𝑜 − 𝜖𝛽𝑉1𝐼
𝑜]

+𝑏(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝐼𝑜 − 𝐼).

 

At DFE, 𝐼𝑜 = 0, therefore 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-19, No.-10, October (2024)  pp 67-86 

A.L. Olutimo et al. 
 

79 

 

  

𝑑𝑉

𝑑𝑡
= (1 −

𝑆𝑜

𝑆
) [−𝛽𝑆𝐼 + 𝜇(𝑆𝑜 − 𝑆) − 𝜃(𝑅𝑜 − 𝑅)]

+ (1 −
𝑉1

𝑜

𝑉1
) [−𝜖𝛽𝑉1𝐼 + (𝜇 + 𝛼)(𝑉1

𝑜 − 𝑉1)]

+ (1 −
𝑉2

𝑜

𝑉2
) [(𝜇 + 𝜙)(𝑉2

𝑜 − 𝑉2)]

+𝑎[𝛽𝑆𝐼 + 𝜖𝛽𝑉1𝐼] − 𝑏(𝜇 + 𝛿 + 𝛾 + 𝜏)𝐼

 

Since 𝑏 =
1

(𝜇+𝛿+𝛾+𝜏)
, 

It follows that 

𝑑𝑉

𝑑𝑡
= (1 −

𝑆𝑜

𝑆
) [−𝛽𝑆𝐼 + 𝜇(𝑆𝑜 − 𝑆) − 𝜃(𝑅𝑜 − 𝑅)]

+ (1 −
𝑉1

𝑜

𝑉1
) [−𝜖𝛽𝑉1𝐼 + (𝜇 + 𝛼)(𝑉1

𝑜 − 𝑉1)]

+ (1 −
𝑉2

𝑜

𝑉2
) [(𝜇 + 𝜙)(𝑉2

𝑜 − 𝑉2)] + 𝑎(𝛽𝑆 + 𝜖𝛽𝑉1)𝐼 − 𝐼.

 (12)  

Rewriting (12), we have 

𝑑𝑉

𝑑𝑡
= [𝑎(𝛽𝑆 + 𝜖𝛽𝑉1) − 1]𝐼 − (

𝑆 − 𝑆𝑜

𝑆
) [𝛽𝑆𝐼 + 𝜇(𝑆 − 𝑆𝑜) − 𝜃(𝑅 − 𝑅𝑜)]

− (
𝑉 − 𝑉1

𝑜

𝑉1
) [𝜖𝛽𝑉1𝐼 + (𝜇 + 𝛼)(𝑉1 − 𝑉1

𝑜)]

− (
𝑉2 − 𝑉2

𝑜

𝑉2
) [(𝜇 + 𝜙)(𝑉2 − 𝑉2

𝑜)],

 

at DFE, 𝑆 =
1

𝜇
[(1 − 𝜌)𝜋 +

𝜙𝛼𝜌𝜋

(𝜇+𝜃)(𝜇+𝜙)(𝜇+𝛼)
]; 𝑉1 =

𝜌𝜋

𝜇+𝛼
 

So that 

𝑑𝑉

𝑑𝑡
= [

𝑎𝛽𝜋

𝜇(𝜇 + 𝛼)
([(1 − 𝜌)(𝜇 + 𝛼) +

𝜙𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)
] + 𝜇𝜖𝜌) − 1] 𝐼

−(
𝑆 − 𝑆𝑜

𝑆
) [𝛽𝑆𝐼 + 𝜇(𝑆 − 𝑆𝑜) − 𝜃(𝑅 − 𝑅𝑜)]

−(
𝑉 − 𝑉1

𝑜

𝑉1
) [𝜖𝛽𝑉1𝐼 + (𝜇 + 𝛼)(𝑉1 − 𝑉1

𝑜)]

−(
𝑉2 − 𝑉2

𝑜

𝑉2
) [(𝜇 + 𝜙)(𝑉2 − 𝑉2

𝑜)].

 

Since 𝑎 =
𝜎

(𝜇+𝜎)(𝜇+𝛿+𝛾+𝜏)
, we have 
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𝑑𝑉

𝑑𝑡
=

[
 
 
 
 

𝛽𝜎𝜋

𝜇(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼)
 ×

((1 − 𝜌)(𝜇 + 𝛼) +
𝜙𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)
+ 𝜇𝜖𝜌) − 1

]
 
 
 
 

𝐼

−(
𝑆 − 𝑆𝑜

𝑆
) [𝛽𝑆𝐼 + 𝜇(𝑆 − 𝑆𝑜) − 𝜃(𝑅 − 𝑅𝑜)]

−(
𝑉 − 𝑉1

𝑜

𝑉1
) [𝜖𝛽𝑉1𝐼 + (𝜇 + 𝛼)(𝑉1 − 𝑉1

𝑜)]

−(
𝑉2 − 𝑉2

𝑜

𝑉2
) [(𝜇 + 𝜙)(𝑉2 − 𝑉2

𝑜)]

 

That is, 

𝑑𝑉

𝑑𝑡
= (𝑅𝑜 − 1)𝐼 − (

𝑆 − 𝑆𝑜

𝑆
) [𝛽𝑆𝐼 + 𝜇(𝑆 − 𝑆𝑜) − 𝜃(𝑅 − 𝑅𝑜)]

−(
𝑉 − 𝑉1

𝑜

𝑉1

) [𝜖𝛽𝑉1𝐼 + (𝜇 + 𝛼)(𝑉1 − 𝑉1
𝑜)]

−(
𝑉2 − 𝑉2

𝑜

𝑉2

) [(𝜇 + 𝜙)(𝑉2 − 𝑉2
𝑜)],

 

where 

𝑅𝑜 =
𝛽𝜎𝜋

𝜇(𝜇 + 𝜎)(𝜇 + 𝛿 + 𝛾 + 𝜏)(𝜇 + 𝛼)
((1 − 𝜌)(𝜇 + 𝛼) +

𝜙𝛼𝜌

(𝜇 + 𝜃)(𝜇 + 𝜙)
+ 𝜇𝜖𝜌). 

𝑑𝑉

𝑑𝑡
= 0 if and only if 𝑆 = 𝑆𝑜, 𝑉1 = 𝑉1

𝑜, 𝑉2 = 𝑉2
𝑜, 𝐼 = 0 and 

𝑑𝑉

𝑑𝑡
< 0 if 𝑅𝑜 < 1. The only 

compact invariant set is the single-element 𝜉𝑜. Thus, according to Lasalle’s invariant 

principle, for any initial condition in the model system (1), as 𝑡 → ∞, the solution will 

approach 𝜉𝑜  if 𝑅𝑜 ≤ 1 . Therefore, when 𝑅𝑜 ≤ 1 , the disease-free equilibrium is 

globally asymptotically stable. 

VIII.   Numerical Simulations and Results 

The model was assessed through numerical analysis, and simulations allowed 

for the observation of parameter impacts. Wolfram Mathematica was utilized for 

conducting the simulations. 

The table below contains the parameter values used to study how a double dose of 

vaccine and an effective contact rate impact the speed at which diarrhea spreads in a 

population of susceptible, vaccinated 1, vaccinated 2, exposed, infected, and recovered 

individuals. The value of the rate of acquiring immunity from the second dose of 

vaccine was varied first, followed by the treatment rate ( 𝜏 ). 

Table 2. Values of the Parameters for Figures 3 - 6. 
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Table 2. Parameter values 

Parameters Values Source 

𝜋 1000 Assumed 

𝛽 0.000009 [X] 

𝜇 0.012 [I] 

𝜃 0.2 Assumed 

𝜖 0.1 Assumed 

𝛼 0.3 Assumed 

𝜙 0.2 Assumed 

𝜏 0.1 [I] 

𝜎 0.7 [I] 

𝛿 0.5 Assumed 

𝛾 0.6 Assumed 

IX.   Sensitivity Analysis  

The table below shows the sensitivity index of each parameter when their 

values are inputted into the partial differential equations and solved, 

  𝑋𝑝
𝑅𝑜 =

∂

∂𝑝
(𝑅𝑜) ×

𝑝

𝑅𝑜
 

and 𝑋𝑅𝑜 being the sensitivity of 𝑅𝑜 concerning any parameter. The sensitivity index 

for the parameters, as determined by the derivative-based local method, is depicted in 

Figure 2. 

 

Fig. 2. Sensitivity index of parameters of 𝑅𝑜. 
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(a) Graph of population against time 
for 𝜋 = 1000, 𝛽 = 0.000009, 𝜌 =

0.5, 𝜇 = 0.012, 𝜃 = 0.2, 𝜀 = 0.1, 𝛼 =
0.3, 𝜙 = 0.2, 𝛾 = 0.6, 𝜏 = 0.1, 𝜎 =

0.7, 𝛿 = 0.5 

(b) Graph of population against 
time for 𝜋 = 1000, 𝛽 =

0.000009, 𝜌 = 0.5, 𝜇 = 0.012, 𝜃 =
0.2, 𝜀 = 0.1, 𝛼 = 0.3, 𝜙 = 0.6, 𝛾 =

0.6, 𝜏 = 0.1, 𝜎 = 0.7, 𝛿 = 0.5 

Fig. 3. Effect of acquiring immunity from second dose vaccine 

 

  

(a)  Graph of population against time 

for 𝜋 = 1000, 𝛽 = 0.000009, 𝜌 =
0.5, 𝜇 = 0.012, 𝜃 = 0.2, 𝜀 = 0.1, 𝛼 =
0.3, 𝜙 = 0.6, 𝛾 = 0.7, 𝜏 = 0.1, 𝜎 =

0.7, 𝛿 = 0.5 

(b) Graph of population against time for 

𝜋 = 1000, 𝛽 = 0.000009, 𝜌 = 0.5, 𝜇 =
0.012, 𝜃 = 0.2, 𝜀 = 0.1, 𝛼 = 0.3, 𝜙 =
0.8, 𝛾 = 0.6, 𝜏 = 0.1, 𝜎 = 0.7, 𝛿 = 0.5 

Fig. 4. Effect of acquiring immunity from second dose vaccine 

 



 

 

 

J. Mech. Cont.& Math. Sci., Vol.-19, No.-10, October (2024)  pp 67-86 

A.L. Olutimo et al. 
 

83 

 

  

(a)  Graph of population against time 

for 𝜋 = 1000, 𝛽 = 0.000009, 𝜌 =
0.5, 𝜇 = 0.012, 𝜃 = 0.2, 𝜀 = 0.1, 𝛼 =
0.3, 𝜙 = 0.2, 𝛾 = 0.6, 𝜏 = 0.1, 𝜎 =

0.7, 𝛿 = 0.5 

(b) Graph of population against time for 

𝜋 = 1000, 𝛽 = 0.000009, 𝜌 = 0.5, 𝜇 =
0.012, 𝜃 = 0.2, 𝜀 = 0.1, 𝛼 = 0.3, 𝜙 =
0.2, 𝛾 = 0.6, 𝜏 = 0.3, 𝜎 = 0.7, 𝛿 = 0.5 

Fig. 5. Effect of treatment rate on the dynamics of diarrhea disease 

 

 

  

(a) 𝜋 (b) 𝜋 

Fig. 6. The dependence of 𝑅𝑜 on 𝜋, 𝛽, 𝜙 
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(a)  𝛽 (b)  𝜙 

Fig. 7. The dependence of 𝑅𝑜 on 𝜋, 𝛽, 𝜙 

X.  Discussion  

In this work, we studied the impact of a double-dose vaccine on the dynamics 

of diarrhea disease using a mathematical model. The disease-free and endermic 

equilibria and the basic reproduction number 𝑅0 were all determined. The result of the 

qualitative analyses showed that disease-free equilibrium is locally asymptotically 

stable if 𝑅𝑜 < 1  and unstable otherwise. The implication of this is: If the basic 

reproduction number is less than one, diarrhea can be managed by administering a 

double dose vaccine, regardless of the initial number of infected individuals in the 

population. However, if the reproduction number exceeds unity, then diarrhea will 

persist in the population. We also obtained conditions under which the disease-free 

equilibrium is globally stable. If the equilibrium point is globally stable, it means that 

when a population is initially free of the disease, it will remain disease-free in the long 

run. This suggests that effective control measures have been implemented to prevent 

the reintroduction or spread of the disease. 

The sensitivity analysis in Figure 2 showed that the contact rate. (𝛽)  and the 

recruitment rate (𝜋) are the most sensitive parameters of the basic reproduction number 

𝑅𝑜, with a positive index. This means that changes in the values of 𝛽 and 𝜋 have the 

greatest effect on the reproduction number, and consequently, on the prevalence of the 

disease in the population. The result 𝜒𝛽
𝑅𝑜 = 1.0 and 𝜒𝜋

𝑅𝑜 = 1.0 implies if 𝛽 and 𝜋 is 

increased (decreased) by 10 percent then 𝑅𝑜 will also increase(decrease) by 10 percent. 

Also very sensitive is the infectivity rate of the exposed individuals (𝜎) and rate of 

immunity from the second dose (𝜙)  . The result 𝜒𝜎
𝑅𝑜 = 0.0168539  and 𝜒𝜙

𝑅𝑜 =

0.0260482 implies if 𝜎 and 𝜌 are increased (decreased) by 10 percent the 𝑅𝑜 increase 

(decrease) by 0.169 percent and 0.261 percent respectively. The dependence of 𝑅𝑜 on 

parameters 𝜋, 𝛽, and 𝜙 are clearly indicated in Figure 6. (a) and (b) and Figure 7. (a) 

and (b) respectively where the infected population reduced drastically with a significant 

increase in the number of recovered individuals. The sensitivity indices of the other 

parameters can be interpreted similarly. 
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The graphs of the simulation are shown in Figures 3 - 4. In Figure 3. (a) and (b) and 

Figure 4. (a) and (b), the effect of acquiring immunity from second dose vaccine (𝜙) 

were shown. The findings indicate that an increase in the rate of immunity acquisition 

from the second dose of vaccine leads to an increase in the susceptible and recovered 

classes and a decrease in infections. This suggests that as individuals acquire immunity 

from the second dose of vaccine, the occurrence of infections decreases. Therefore, by 

increasing immunity through the second dose, it is possible to reduce the number of 

individuals who are exposed to and infected with diarrhea. 

in addition, the impact of the treatment rate (𝜏) on the dynamics of diarrhea, the disease 

was investigated and the results are displayed in Figure 5. (a) and (b) which showed 

the higher the treatment rate the lower the infected population. This means that as the 

treatment rate goes up, the number of people who are unable to recover in the 

population goes down. Moreover, an increase in the treatment rate results in a 

corresponding rise in the number of individuals who have recovered. 

X.  Conclusion 

To effectively combat diarrhea disease in the population, health authorities, 

health caregivers, and the community must work together to reduce the basic 

reproduction number (𝑅𝑜) below one. This can be done by decreasing contact rates, 

limiting travel or visits to areas where diarrhea disease is prevalent, and ensuring that 

vaccines and vaccination programs are effective and widely available as shown in the 

sensitivity analysis conducted in this study. Additionally, individuals should be 

encouraged to receive a double dose of the vaccine to prevent future infections. 
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