Transmission And Control Dynamics Of Rotavirus Diarrhea Model With Double Dose Vaccination

Journal Of Mechanics Of Continua And Mathematical Sciences, Vol.-19, No.-10,

Authors

  • A. L. Olutimo Department of Mathematics, Lagos State University, Nigeria. Author
  • O. J. Oni Department of Mathematics, Oregon State University, USA. Author
  • F. A. Williams Department of Mathematics, Lagos State University, Nigeria. Author
  • J. R. Akewushola Department of Mathematics, Lagos State University, Nigeria. Author
  • F. A. Abass Department of Mathematics, Lagos State University, Nigeria. Author

DOI:

https://doi.org/10.60951/afrischolar-389

Keywords:

Lyapunov function, Diarrhea Model, Vaccination, Basic Reproduction Number, Stability
         Abtract Views | PDF Download: 1 / 0

Abstract

This study introduces a six-compartmental mathematical model (S, V1, V2, E, I, R) to examine the impact of administering a double dose vaccine on the dynamic spread of diarrhea within a community. The mathematical analysis shows the existence of equilibrium points for both disease-free and endemic states in the model. The basic reproduction number R0 was determined using the Next Generation Matrix. Analysis has shown that the basic reproduction number R0 < 1 which indicates the disease-free equilibrium point is locally asymptotically stable. Also, using a suitable Lyapunov functional for the model system expressed in state variables and parameters defining the dynamic characteristics of spread and control strategies of the rotavirus diarrhea to obtain the global stability of disease-free equilibrium point over time. A numerical simulation was carried out by Wolfram Mathematica to show the effect of a seconddose vaccine. The inclusion of a double-dose vaccine has been found to have a
significant effect on completely eliminating the outbreak of diarrhea. This is evidenced by the local and global stability results, which indicate that effective measures have been taken to prevent the reintroduction or transmission of the disease, and if there
may be a risk of outbreaks or reemergence of the disease, very little continuous monitoring and intervention strategies are required to maintain control as this should be taken seriously by medical practitioners or policy health makers.

Downloads

Download data is not yet available.

References

I. Adewale S. O., Olapade L. A., Ajao S. O., Adeniran G. A., : ’Analysis of diarrhea in the presence of vaccine’. Int. J. Sci. Eng. Res. Vol. 6, pp. 396–400,2015.

II. Akinola E. I., Awoyemi B. E., Olopade I. A., Falomo O. D., Akinwumi T. O., : ’Mathematical analysis of a diarrhea model in the presence of vaccination and treatment waves with sensitivity analysis.’ J. Appl. Sci. Environ. Manage. Vol. 25, pp. 1107-1114, 2021. 10.4314/jasem.v25i7.2

III. Ardkaew J., Tongkumchum P., : ’Statistical modeling of childhood diarrhea in northeastern Thailand Southeast Asian’, J. Trop. Med. Pub. Health. Vol. 40, pp. 807–811, 2009. J. Mech. Cont.& Math. Sci., Vol.-19, No.-10, October (2024) pp 67-86 A.L. Olutimo et al.86

IV. Berhe H. W., Makinde O. D., Theuri D. M.., : ’Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model’ J. Appl. Math. Article ID 8465747, 13 pages, 2019. 10.1155/2019/8465747

V. Bonyah E., Twagirumukiza G., Gambrah P., : ’Analysis of Diarrhea model with saturated incidence rate’. Open J. Math. Sci. Vol. 3, pp. 29–39, 2019. 10.30538/oms2019.0046

VI. Borisov M., Dimitrova N., Simeonov I., : ’Mathematical modeling and stability analysis of a two-phase biosystem’. Processes. Vol. 8, pp. 791, 2020. 10.3390/pr8070791

VII. Cherry B. R., Reeves M. J., Smith G., : ’Evaluation of bovine viral diarrhea virus control using mathematical model of infection dynamics’. Prev. Vet. Med. Vol. 33, pp. 91–108, 1998. 10.1016/S0167-5877(97)00050-0

VIII. Egbetade S. A., Salawu I. A., Fasanmade P. A., : ’Local stability of equilibrium points of sir mathematical model of infections diseases’. World J. Res. Rev. Vol. 6, pp. 79–81, 2018.

IX. Forde J. E., : ’Delay differential equation models in mathematical biology’ Doctoral Thesis, University of Michigan, United States of America. 2005. api.semanticscholar.org/CorpusID:125373845,hdl.handle.net/2027.42/125360

X. Lungu E., Chaturvedi O., Jeffrey M., Masupe S., : ’Rotavirus diarrhea and analysis through epidemic modeling’. J. Biomed. Eng. Inform. Vol. 4, pp. 21–37, 2018. 10.5430/jbei.v4n2p21

XI. Olutimo A. L., Adams D. O., : ’On the stability and boundedness of solutions of certain non-autonomous delay differential equation of third order’. Appl. Math. Vol. 7, pp. 457–467, 2016. 10.4236/am.2016.76041

XII. Olutimo A. L., Adams D. O., Abdurasid A. A., : ’Stability and boundedness analysis of a prey-predator system with predator cannibalism’ J. Nig. Math. Soc. Vol. 41, pp. 275–286, 2022. ojs.ictp.it/jnms

XIII. Olutimo A. L., Akinmoladun O. M., Omoko I. D., : ’Stability and boundedness analysis of Lotka-Volterra prey-predator model with prey refuge and predator cannibalism’. J. Comp. Model. Vol. 12, pp. 5–18, 2022. 10.47260/jcomod/1212

XIV. Olutimo A. L., Williams F. A., Adeyemi M. O., Akewushola J. R., : ’Mathematical modeling of diarrhea with vaccination and treatment factor’. J. Adv. Math. Comput. Sci. Vol. 39, pp. 59–72, 2024. 10.9734/jamcs/2024/v39i51891

Downloads

Published

2024-10-31

Issue

Section

Publications

How to Cite

Olutimo, A. L., Oni, O. J., Williams, F. A., Akewushola, J. R., & Abass, F. A. (2024). Transmission And Control Dynamics Of Rotavirus Diarrhea Model With Double Dose Vaccination: Journal Of Mechanics Of Continua And Mathematical Sciences, Vol.-19, No.-10,. Afrischolar Discovery Repository (Annex), 67-86. https://doi.org/10.60951/afrischolar-389

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.